Desi Naked Fat Women Sex
Desi Naked Fat Women Sex ===> https://bltlly.com/2sXO3w
Basically, if you want your muscles to contract so you can move or lift a weight, you have to expend ATP. When your muscles contract, ATP is broken down to adenosine di-phosphate (ADP) and a phosphate molecule, with the help of the enzyme ATPase, creating the desired end product: energy to allow your muscles to move.
Although most creatine research has been conducted in men, some evidence indicates women also benefit from creatine supplementation. Similar to men, women can experience significant muscle creatine accumulation and performance enhancement in response to creatine monohydrate. However, some studies show little to no benefit at all.
In one study, researchers examined the effects of creatine supplementation during a 10-week resistance training program in physically active, but untrained, women. During the 10-week program, all women performed resistance exercises (five sets, 12 repetitions at 70 percent RM for leg press, shoulder press, squat, leg extension, leg curl, and bench press) for one hour three times per week4. A 20-gram/day loading dose of creatine for four days was followed by five grams per day for the remainder of the program.
In a similar study, researchers examined the effect of five weeks of creatine monohydrate supplementation using 16 NCAA Division I female lacrosse players during their preseason conditioning program5. Half of the women were given creatine at a loading dose of 20 grams per day for seven days, followed by a maintenance dose of two grams a day for the remaining 24 days. The other women took a placebo. All women completed a resistance training workout three times per week.
The results showed that the women taking creatine demonstrated a significantly greater increase in their maximum bench press strength compared with those taking a placebo. These researchers agreed with the previously mentioned study and suggested that creatine likely provided a greater stimulus for training, which helped enhance strength.
In the final long-term study done to date, researchers examined the effects of creatine in 14 female NCAA Division I soccer players6. Seven women were given creatine, and seven were given a placebo. The women given creatine received 15 grams per day for the first five days followed by five grams per day for the remainder of the study. After 13 weeks, women taking creatine had greater gains in maximal bench press and squat strength than the women taking the placebo.
In 2014, sports nutrition researchers looked at the effects of 28 days of creatine supplementation with or without Beta-alanine on body composition, muscle function, and water retention in 32 active college-aged women15. Over the 28 days, the women participated in their normal activities and were then tested at the end for changes in aerobic and anaerobic performance, muscle creatine content, and body composition. Overall, the results showed that most of the women, even those in the placebo group, had beneficial changes in body composition, including reduced body fat and increased muscle mass. They also had no significant changes in body water.
With creatine, there are those who benefit from supplementation (responders) and those who do not (non-responders). The lack of effects seen in some studies in women could be due to the fact that these women do not respond to the effects of creatine, in terms of muscular strength, power, or aerobic capacity.
The non-responder phenomenon could be related to the type of muscle fiber and size of cross-sectional area of muscle fibers that a person possesses uniquely. Men and women who have more fast twitch fibers (strength muscle fibers) and a larger initial cross-sectional area of all muscle fiber types can increase their muscle creatine more after seven days than those with fewer fast twitch fibers or smaller muscle cross-sectional area.
From a biological sex perspective, women usually have smaller cross-sectional muscle fiber areas of both their fast twitch and slow twitch fiber types, as do women and men who do more aerobic activity than strength training.
It has also been suggested that women possess a naturally higher average total muscle content of creatine (10 percent) than their male counterparts, so they may need to ingest more in order to increase their creatine levels above their natural levels, which means more than 3 to 5 grams per day (>0.1 g/kg/day) may be necessary. Overall, these physiological differences between men and women may explain why certain women do not respond to the effects of creatine supplementation.
For example, in 2006, researchers showed a lack of benefit from creatine supplementation in trained women11. In this 10-week study, 26 young resistance-trained women were split into two groups. One group was given a placebo, and the other was given creatine at a dose of 0.3 g/kg/d for the first seven days (about 17 grams per day for the average women) and then given a dose of 0.03 grams per kg for the remainder of the study (about 1.7 grams per day). The women trained four days a week and were encouraged to increase the amount of weight they could lift each time they trained.